

MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY BATHINDA-151001 (PUNJAB) INDIA

(A State University Estb. by Govt. of Punjab vide Punjab Act No. 5 of 2015 and Approved u/s 2(f) & 12 (B) of UGC; Member AIU)

Department: CIVIL ENGINEERING

Giani Zail Singh Campus College of Engineering & Technology MRSPTU, Bathinda

Programme: M.Tech Civil Engg. (Construction

COURSE ARTICULATION MATRIX

#	به	er	t	u			Statement											
Subject	S Code	Semester	Credit	Duration (Hrs)	LTP	COs		P01	PO2	P03	P04	P05	90d	PO7	PO8	PSO1	PSO2	PSO3
and Control						CO1	Understanding the concept of planning, monitoring and controlling projects, Create project management strategies.	-	3	-	1	3	-	-	-	3	3	-
	MCIE6-101	1^{st}	04	45	310	CO2	Knowledge of optimization of resources and man power.	2	-	3	-	3	-	-	-	3	3	1
Project Planning						CO3	Understanding about the safety in construction industry and supervision of construction projects.	-	2	1	-	2	-	-	-	3	-	2

gand						CO1	Students get awareness of principles of construction Management and decision making in construction Industry.	2	-	-	-	3	-	-	-	3	3	-
Construction Engineering and Management	MCIE6-102	1 st	04	45	310	CO2	Student get knowledge about Applications of mobilization, cost time schedules and MIS(Management information system) technique in the real time construction operation	3	-	3	2	-	-	-	-	2	3	1
Cons						CO3	Students get Knowledge of work measurement application in construction industry.	-	2	1	-	2	-	-	-	2	-	2
ction						COI	The knowledge of what concrete is, how it is formed, what materials are involved and properties and requirements of each concrete ingredient	3	2	-	2	2	-	-	-	3	2	3
Concrete Construction Technology	MCIE6-103	1^{st}	04	45	310	CO2	Ability to perform various tests on concrete ingredients and also on concrete (Fresh and Hardened)	-	3		3	3	-	2	2	2	3	-
Conci						CO3	Ability to analyze various special concrete and their applications	-	2	3	-	-	3	-	2	2	-	3
e Lab – Janning	6-104	11	2	8	4	CO1	Visualize things/ concepts and express the thoughts in the form of sketches, chart, models, etc	3	-	-	3	2	-	3	2	3	2	2
Software Lab – Project Planning	MCIE6	1 st	02	48	0 0	CO2	Apply various Codal provisions related to Civil Engineering.	-	-	3	-	-	-	2	2	-	3	3

						CO3	The students will be able to apply their knowledge of structural mechanics in addressing design problems of structural engineering.		3	2	-	2	3	-	3	2	3	3
IAL						CO1	Student will be able to implement the basic principles of numerical techniques in day to day application of Civil Engineering.	-	-	-	-	1	-	-	-	-	-	2
COMPUTATIONAL	MCIE6-156	1^{st}	04	45	310	CO2	Students get knowledge for solving complex mathematical problems using only simple arithmetic operations and using the numerical analysis facilities.	2	-	1	-	2	-	-	-	-	-	2
COM						CO3	Students get Knowledge for the solution of linear, non-linear & transcendental equations, interpolation, integration and differential equations.	-	-	1	-	2	-	-	-	-	-	2
neering &						C01	Students will be able to understand the major global environmental issues, their causes, sources, management and laws/polices related to these technologies involved in eco-friendly production and mechanism of carbon credits.	-	-	-	-	-	1	1	3	-	1	1
Environmental Engineering & Management	MCIE6-157	1st	04	45	310	CO2	Students get knowledge about the major principles of environmental impact assessment and the implications of current rules and regulations in relation to environmental impact assessment.	1	-	-	-	1	1	-	3	-	1	1
Envirc						CO3	Students get awareness about the causes, implications and management of local environmental issues like land degradation, wasteland and water logging.	-	-	-	-	-	1	-	3	-	1	1
Maintena nce of Building Structure s	MCIE6- 158	$1^{ m st}$	04	45	310	CO1	Apply principles of compatibility of materials	3	-	-	2	2	ı	ı	3	2	3	2

						CO2	Assess the requirement of maintenance and retrofitting in structures	-	2	3	2	-	2	-	2	3	3	3
						CO3	Identify different methodologies of maintenance and retrofitting in structures	3	3	3	-	2	2	2	3	3	3	3
als						CO1	Identify and understand the basic mechanical behaviour of composite materials and make sound prediction on the likely behaviour of new combinations of materials.	3	2	-	-	-	-	1	1	3	2	-
Composite Materials	MCIE6-159	$1^{\rm st}$	04	45	310	CO2	Apply knowledge of composite mechanical performance and manufacturing methods to design a composite's project.	3	-	3	-	2	-	-	1	2	3	1
Comp	V					CO3	Demonstrate a practical understanding of composite properties and fabrication techniques, and to be able to make realistic suggestions for the evaluation of composite behaviour, where appropriate.	-	3	3	-	1	-	-	-	3	3	2
ontract						CO1	Apply relevant contract practices, procedures and standard forms of contracts for building, infrastructure & other construction projects.	2	-	-	3	-	2	-	-	3	-	1
Construction laws & Contract Management	MCIE6-205	2^{nd}	04	45	310	CO2	Knowledge and apply the fundamental laws and legal requirements applicable to construction and infrastructure management.	2	-	-	-	2	-	-	1	3	-	-
Construct						CO3	Integrate professional procedures and regulations (addressing safety, health, social cultural, and environmental factors) in engineering project contracts/contractual relationships.	-	-	-	2	3	-	-	3	3	-	2
Building Cost & Quality Managem ent	MCIE6- 206	2^{nd}	40	45	310	CO1	Students will be able to know the modern trends in project management viz. design, construction, and resource utilization and cost estimation.	2	-	2	-	3	-	ı	ı	3	3	-

						CO2	Students will be able to know the concepts in economics and finance in civil constructions.	3	-	-	2	3	-	-	-	-	3	2
						CO3	Students will be able to know the quality control aspects in planning, systems, management, assurance and improvement techniques.	-	2	2	-	-	-	2	-	2	-	2
QA & QC LAB	MCIE6-207	2^{nd}	02	45	0.4	CO1	Reproduce the basic knowledge of mathematics, science and engineering in assessing the quality and suitability of construction materials, structural element & preparation of test reports as per the IS specification by inculcating professional and ethical responsibility in the areas of material testing & modern instrument usage.	3	2	3	2	2	3	1	1	3	3	2
QA & C	MCIE	2)	7	0	CO2	Formulate and solve in teams in order to improve future problem solving ability in material engineering and able to present it.	3	3	3	3	3	-	3	1	2	2	3
						CO3	Compare experimental results to the theoretical results and write technical reports.	3	3	2	2	-	-	-	3	2	3	3
inancial						CO1	A basic ability to plan, control and monitor construction projects with respect to time and cost	3	2	3	3	-	-	-	2	-	2	2
Construction Costing & Financial Management	MCIE6-260	2^{nd}	04	45	310	CO2	Apply fundamentals of management to utilize functions of management in construction. Like Demonstrate leadership qualities by implementing construction project processes with control.	3	2	2	2	3	3	3	2	3	3	3
Constructi						CO3	Apply construction management practices and principles to a project and lead the team for efficient project management considering economical and financial factors.		-	2	-	3	2	3	2	3	3	3

GEMENT						CO1	Student will be able to understand and compliance with health and safety legislation relevant to Civil Engineering projects.	2	-	-	-	3	-	-	-	2	-	-
TY MANA	MCIE6-261	2^{nd}	04	45	310	CO2	Students get knowledge about the awareness of the construction project risks and the legal requirements for project safety.	1	-	-	-	3	-	-	-	-	1	-
PROJECT SAFETY MANAGEMENT	MC					CO3	Student get Knowledge about the documentation and record keeping for the various activities like safety trainings, safety meetings, safety audits, safety measures and inspections etc. carried out for the safety of the persons working on the construction project.	2	-	-	1	3	-	-	-	1	1	2
ign and on	52					CO1	Knowledge about the design shallow footings based on dimensions, thickness, area and length.	-	3	2	-	2	-	-	-	3	2	-
Foundation Design and Construction	MCIE6-262	2^{nd}	04	45	310	CO2	Analyse earth retaining structures to determine earth pressures.	3	-	3		2	-	-	-	3	2	2
Fou						CO3	Knowledge about the design and construction of special foundation.	2	3	1	-	2	-	-	-	3	2	-
NOIL						CO1	Students learn about appropriate technologies and materials to be used to construct low-cost houses in the rural areas.	3	-	2	-	1	1	-	1	2	3	-
RURAL CONSTRUCTION TECHNOLOGY	MCIE6-263	2^{nd}	04	45	310	CO2	Students get to learn about various rural technologies which are used to provide proper water supply and sanitation facilities to rural population at a lesser cost.	2	-	3	1	-	-	2	-	1	-	1
RURAI						CO3	Students get familiar with rural road construction technologies and indigenous methods of transportation used by people in rural areas.	2	2	1	-	2	-	-	2	-	-	2

Detailing						CO1	Ability to design for Earthquake and reinforcement detailing for different components of RCC building frames.	3	3	-	3	-	2	-	-	-	3	-
Advanced Structural Design & Detailing	MCIE6-364	3 rd	04	45	310	CO2	Ability to design and reinforcement detailing for Earthen buildings as per IS Codes.	2	3	3	2	-	-	-	1	2	1	3
ced Structur	MC				(,	CO3	Ability to design and reinforcement detailing for masonry structures as per IS Codes.	2	3	-	2	-	-	-	-	-	2	-
Advan						CO4	Ability to understand earthquake effect on building and strengthen the structure.	3	3	3	-	-	-	3	3	-	2	3
nstruction &	8					CO1	Students get to learn about various design methods of flexible and rigid pavements prevalent in different parts of the world with comprehensive learning of IRC code methods used in India.	-	3	2	-	1	-	-	-	1	2	1
Pavement Design, Construction Maintenance	MCIE6-365	3^{rd}	04	45	310	CO2	Students learn about various engineering methods used for construction of different types of pavement structures.	3	-	2	1	-	-	1	-	1	3	1
Pavement						CO3	Students get familiar with the methods of evaluation of pavement structures and to undertake various types of maintenance management strategies.	3	2	1	-	2	-	-	2	3	-	-
arch Iology	[0-10]	þ	4	16	0 1	CO1	Analyze and investigate the business problems and develop into research problems.	2	3	-	-	1	-	-	-	-	2	-
Research	MREM0	3 rd	04	45	4 0	CO2	Identify and apply the latest appropriate research approaches and techniques for developing solutions of research problem.	-	3	-	1	-	2	1	1	1	3	2

CO3	Relate ethical and philosophical consideration in business research.	-	-	-	-	2	2	-	2	-	-	2
CO4	Apply various statistical techniques and present the research findings in report form.	2	3	-	-	-	3	-	-	1	1	3